Mrmr Ba: a Hybrid Gene Selection Algorithm for Cancer Classification

نویسندگان

  • OSAMA AHMAD ALOMARI
  • AHAMAD TAJUDIN KHADER
  • LAITH MOHAMMAD ABUALIGAH
چکیده

The microarray technology facilitates biologist in monitoring the activity of thousands of genes (features) in one experiment. This technology generates gene expression data, which are significantly applicable for cancer classification. However, gene expression data consider as highdimensional data which consists of irrelevant, redundant, and noisy genes that are unnecessary from the classification point of view. Recently, researchers have tried to figure out the most informative genes that contribute to cancer classification using computational intelligence algorithms. In this paper, we propose a filter method (Minimum Redundancy Maximum Relevancy, MRMR) and a wrapper method (Bat algorithm, BA) for gene selection in microarray dataset. MRMR was used to find the most important genes from all genes in gene expression data, and BA was employed to find the most informative gene subset from the reduce set generated by MRMR that can contribute in identifying the cancers. The wrapper method using support vector machine (SVM) method with 10-fold cross-validation served as evaluator of the BA. In order to test the accuracy performance of the proposed method, extensive experiments were conducted. Three microarray datasets are used, which include: colon, Breast, and Ovarian. Same method procedure was performed to Genetic algorithm (GA) to conducts comparison with our proposed method (MRMR-BA). The results show that our proposed method is able to find the smallest gene subset with highest classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informativ...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

A Cancer Gene Selection Algorithm Based on the K-S Test and CFS

BACKGROUND To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017